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Abstract. Circular coin,luction is a techni<lue for b+,havioral rea.<oning

that extends coFmsis coinduction t<) spe('ifi('ario,ls with circularities. Be-

cause b++havioral _atisfaction is trot recursivolv etmmerable+ no algorithm

can work for every behavioral statement. Howev++r. algorithms using cir-

c..lar coindu<'tion ('all l)rl)vo ev+,rv practical behavioral r+,sult that we

km)w. This paper prox+,s rh,, corre('tlt_,>s of cir(ttlar COilIIIIICPiOII all+<[51)Itll_

t'l )tlse< It ll+'Ilt'l,S.

1 Introduction

Softwar+' and har(lware systems are growing ill complexity, with ever greater

possibilitivs for subtle errors: these can produce sigififi,:ant loss. inch,,ling httman

life. Unfortunately, building cotnplex reliable systems is very difficult, due to

in('<)ulpleteness att(l rapid evoluti(m of re<luireltlents, an<l re difficulties ill writing

and un<h,rstanding specifications. One approach is through formal methods, with

its two best known branches being model checking and theorem proving: these

can reveal inconsistem:ies, ambiguities and exceptions that could be expensive

or impossible to detect otherwise.

This paper is part of our effort to design, implement, evaluate and popularize

formal method tools for behavioral specification and verification. Our Tatami

system [15.12,11] and its BOBJ component t, a behavioral specification and

verification language of the OBJ family, use hidden algebra [9, 17"]. Although our

work is mainly on theorem proving, our results also have implications for model

checking: in particular, only one state in a behavioral equivalence class needs to

be stored, and instead of ha.shing all visited status, a behavioral model checker

can just check whether a new state is equivalent to one already stored; this is

actually how our CCRW [14] (circular coinductive rewriting) algorithm works in

its BOBJ implementation.

t BOBJ comes from "Behavioral OBJ," where "OBJ" [20] naxnes a family of algebraic

prograanming and specification [,'mguages based on parameterized prograunming and

order sorted term rewriting and Mgebra, possibly enriched with other logics.
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2 Hidden Logic

T<.lav'_ s_ftware syst_,ms ofr+,n follow the 'object paradigm." which may I)e

_l+,scrib_,<t as having:

1. objects with local state and operations that modify or observe them. called

rt_ethods and attribfttes, ros[>ectively:

2. cl+_s._es that <'Jassifv objects through an i,herzt{£m:e hterarchg: and

3. cormu,,v+cnt distributed ex_wution.

I[i_hl+,n al._+,bra fi)rmalizes the ubje<'t para, ligm. b,tt also inchz, les or,limtry pro-

_l';l+IllS ;III'[ (",llll[)l_ll+'llt:";, ()tlr h+'havit)ral al>proach is motivated by the fact that

+'l,+v+'rlv +l+";iR,ne<l s}st_'tllS oftt,tl fail r_)satisfy their r++qllir++tll+,tlts <rri<:tly. bill in-

st_,ad only satisfy them h_'h,H+_c,/l_/, in the sense of +_ppearzT_y to satisfy them

un, ler all possible exp++rimenrs.

Hid<h,n algebra was intro_hwed I9] to giw+ alg+q)raic semanti<:s ft)r the object

paradigm, and developed fm'ther in [10.16. 4.17] among other places. One dis-

tinctive f-arm'e is a split of sorts into ,i.sihle and hidden, where visible sorts are

fi)r data an,t hidden _orts are fiw objects. A model, or hidden algebra, is an ab-

str;wtitm of an itn[)l+'mentation, consisting of the possible states, with concrete

ftm<'tions for the attributes aIll[ tn,'tho<ls, from states to data amt to states.

rest)ectivvly (hen('e, an attribute "'observes" states b'+' retm'ning a visible value.

whih, a method modifies >_tates): i.e., a hithlen algebra is an algebra that in<qu<les
a data universe+ +.

Hidden logic is the generic n,'une for various logics closely related to hidden

algebra, giving sound rules for behaviorN reasoning that are easily automated.

Following [.5], we distinguish two classes of hid<ten logics, depending on whether

the data universe, of "built-ins." is assumed fixed or not. The first versions of

hidden logic took the fixed data approach, but we recently noticed that all our

inference rules <are sound for the larger cl<,'_s of mo<lels which need not protect

data. Sin<'e there are also loose data versions of hi<hte,L logic, such as coherent

hidden alyebra [7, 8J and obsen,ational logic [1, 2.21], we decided not to restrict

our exposition to the fixed data case. Nevertheless. the fixed data hidden logics

are often desirable, since real applications use standard booleans and integers

rather than arbitrary models: for example, the alternating bit protocol cannot

be prow+d correct unless implementations which do not distinguish 0 from 1 are
forbidden.



.\ ,[,.t;fih.,I i,r,',,'m;,r i,,r_ ,,f _:u i_,u:, hid_h'n h,_ic', :q lU.:u '-. m [2(;[ r_.rh,.' u.'irh

r_'l:ai,aL;., t_) m:mv ,)rh,,r ,,m,',q,r>.. ;i hb, torv ()f 16_l,[_,tl :_[,_,,I)v:l wirh ,irari_)n_.

:m,l i,r,,,)l_._ f(,r '.,>n.' r,".llh, lil_'rlri()lLeil I,_Lr I]_)t i)r(,w',l h,,r,,. VG, now inrr,)_hu,,

_-()[lll' (Jr ['h(' [l|(l_t l,,'l,",i("l'iHli',' I t", ;tt,_,lltllili_ familimitv with _JI'_IiZl;H'V ll|;I]IV 'q)l'tq'_[

DeHnithm L. G'_r',r,dz._/,_,ts,.t._L.H ,'idl,'dviMble a,d hhhhm sorts, a

loose data hi(hh,n I I.//,-signature i.,_ a m,.r_/ _.ct.'d l i L' Et_-_(,/'.,zt.v..

4 fixed data hidden (I.//,-signature i._ ,_ tm_ (_. D, ,_'/_,'r,' L" t., ,_ 1,o._,'

,l,#lt hz,l,l,'_ (I" [[ i-sq/mttar.e arm D. call,'d th,: data algebra, i.s a ;mu_// sot't,'d

_i'l -a/,/_br,_. .4 loose data hidden subsignature of S _._ a loose data hiddt'rt

it" H,-_ig.at,_r_; F _,zth F C _ aml F!t-- Sit..4 fixed data hidden subsig-

nature of (S. D) is a fi_'ed data hidden (I', H)-siynatare (F. D) over the same

data u'ith F C= __ and Fly= Sl't. The operations in -_ with one hidden argu-

ment arid t,_sible resMt are called attributes, tho._e with one hidden arg_ment

and hz,lder_ res_lt are called methods, those mith ttvo hidden arguments amt

hul, ler_ re_,It ore called binary methods, az_d tho.se _cit/t otd!/ (zero or more)

_,i.s;ble ,u,/t_;neut._ amt hidden re._ult are called hidden constants.

F[or<fft,,r we may write 'hid,l_,n s _,nature" instead of -loose data hi&l,,n ( 'r'.H)-

signar;ir,"" or "'tix,_[ data hi,l_h.n I I, H)-s git atltL'_'.'" sine(-, wo don't need to dis-

tinguish rIwm: als_ w_' ofr,,nwrite ff fin" (ft. D).

Definition 2..4 loose data hidden X-algebra .4 is a -r'-ab,/.'hra. a_d a fixed

data hidden f r Di-algebra .4 is a -_-algehm .4 ,'_wh that .4 _ - D.

Again. wo often write just "hi,l(lon algebra." .-k hid,lon al._;ebra can be regarded

as a 'bla,'kbox.'" the insi,h, of which is not sevn. sine,, one is ()nlv com'm'm',l with

its behavior under exl)erimonts. Notice that fixed data hi(hlen algebras protect

their _[ara: for eXalll[.)le, slwh ;Ul illl])[eltlVlltatioll of ;I stack of llaTIlr_t] llllllt[),_,['s

_lo_'s not ,'orrupt its builtin natural lllltllbers.

\Ve next formalizo the notion of "'exporintent." which informally is an obser-

vation of an attribute of a system after it has been pvrturbed by some methods.

using th÷ mathematical concept of context: the symbol • bolow is a placehohter

for the state being experimented upon.

Definition 3. Given a hidden subsignature F orS, an (appropriate) F-context

for sort s is a term in T/-({, : s} U Z) having ezactly one occurrence of a ,_pe-

cial variable" • of sort s, where Z is an infinite set of special variables. Let

Cv[" : sJ denote the set of all F-contexts fl_r .sort s. and ear(c) the finite set of

vaciable._ in a cor_te.rt e e:rcept *. ,4 F-contect with t,isible re._ult sort i._ called

a F-experiment: let gv[" : s] denote the set of all F-ezperiments [or sort ._.

When the sort of experiments is important, we use the notation Ct',,,[. : s] for the

F-conte:rts of sort s' for sort s. while Sv, o[* : s] denotes all the F-experiments

oI sort ,, /or .sort s. If c • Cr..,[. : s] and t • T_,_(.V), then c[t] denotes the

term in Ts.,,(ear(c) to X) obtained from e by snb.stitutin 9 t for _," for_nally,

" Special variables are assumed different from ashy oth_,r variables in a given situation.



Th- inr-r.:.,iin_, ,,Xlu,rim_,nts ar,' rh,_,e ()f hid, h,n s,_rr, i,,.. rh()_, wirh .._ G H:

,'xl,,,rim,,nrs ,,f visit,l,, sort at,, all,,w,,,l just to ._n,(>,>rh rh,, l>r,.s,,nrari,,n.

W. now ,l,'fih_' a <Iisrincriv. 5,atom, of hi_hh'n lo_:ic, b,,havioral equivalence.

[at_tiriv,.ly. two states are t_ehaviorally equivalent iff th-y cannot I)e ,lisringuished

b.v any experiment that can be performed on the svsrem.

Definition 4. Given a hiddert S-algebra A a,_d a hid,lea sub.signature F of S.

the e,lui_.,alence given by a =_r a' iff .4.,(a)(_)) = A_ia')(,9) for all F-ecperiments

7, aad all maps' 8: _'ar(:,) + .4 is called F-behavioral equivalence on .4.

We may write - i_rstead of ={: ,_,he_ E a,d F _',,_ be inferred fl'om conte_t.

aml ,,e write -=s tt'herz S = F. Given azt:V equit.'alence _ oft A. azt operation

, ia E ......... is congruent for -,- tff.-l(,(rlt ..... a,,) _ .4_,(a] ..... a{,) whenever

a, _ ,', for i = 1...t_. An operation ,y i.s F-behaviorally congruent for .4 iff

it _._ ,'o,,y,',,e,t for =_v We ofie_z ,trite ju.<t "','o_,yr ze_#'" i,.,tea,t of "t,t ,_,.ior, zl,,i

,'o,.qr,z_'.,_t "':l. .4 hidden F-congruence on .4 is a_ eq,,i_'ale,¢:e o, .4 ,.he,'h i.e

the _,l,'.'#_t!t ot_ _'zs_ble .sort._ ,_,(t fi_r wf_i_h each opev, tio,_ _t, F ia c,m!jruet*t.

The following is the basis for several results below, generalizing a result in [ITJ

to ot)erati( ns that have more than one hid(ten argument or are not I),-havioral;

see i27.26] for a proof. Since final algebr_ks do not necessarily exist in this setting.

existence of a largest hi<hlen /--congruence does not leI>en,[ on them. as it ,lo+.s

in coalgel>ra [29.2a. ">_1

Theorem 1. Gu,eTt a hidde, ._ub.styTtature F of _.w gan,t ,, hidde,_ Z-,dgebr'a .4.

the, Y-heha_.,ioral equivalence is the largest hidden F-co,grt, et, ce o_ .4.

Definition 5. A hidden 5-algebra .4 F-behaviorally satisfies a 5-equatwn

V.Y) t = t'. sag e. lifO(t) -r 8(t'} for each 8: X _ .4. in this case u,e write

A e. E a of we A Eil A r- eh. ior.lly
satisfies each 5-equation in E.

When S and r are clear from context, we may write - and _ instead of

_=v_ and _v, respectively.. Also, to simplify, the presentation, we only. consider

un('on(litional equations here. but the theory also allows conditional e(luations

lit. is,

Definition 6. A behavioral (or hidden) _-specification (or-theory) is

a triple (_, r, E) where _ is a hidden signature, F is a hidden s'ubsignature

of v. and E is a set of _-equations. The operatwns _ F - _ It" are called

3 A similar notion w_ given by Padawitz in [24].



b,_havioral.W," u.,mlllrl h't L;. I;'. L¢t. etc.. ,l,'mJt," b,'ha,'_,Jral *p,r,:iJirat,,ms. ..t

h.Md,'z, !'-,tl,/,'bt',t .-I b,qlaviorally satisfies (,,1 is a nm_h;l of) a &qut_,z,_t'lzl

,vrit,' _; _ ,' ,f .-I _ t; tmplt,'_ .4 _ t,i ,'...Irt ,,p,'rati,,r_ cr _ 57 is behaviorally

congruent fi)r L; tf[cr i._ b,'havzorltll?l ,:orqlrtt,'z_t f_,_" ,',','r!,, .l _ £_.

Th,' f_,lh,win_ .giv*'., rh,. _.xisr,,nce of many ,ongru,,nt _q,.rati, ms:

Proposition I. If L; = ( _. ['. El ts a beh,u,z,sr, Ll _p,','lJ'i,',_ti,,r_. th,'u ,dl op,'r,t-

t_or_; it, F. aml _zll hid,b'_ ,'orr_t,mts. arc beha_zora.ll!l c,,_,l_',_e_t for £;.

Of course. ,Lep,:nding on E. oth,'r operations may also be congruent: in fact, our

exp_,rience is that all operations are congruent in many practical situations.

2.1 An Example

X_ illustrate our con('ei)ts an example with infinite streams. These are common

in the fi)rma] spo('ification and verification of protocols, where the 5' serve ;k_

inputs an,[ outputs.

bth STREAM is sort Stream .

protecting NAT .

op head : Stream -> Nat .

op tail : Stream -> Stream .

op _&_ : Nat Stream -> Stream .

op odd : Stream -> Stream .

op even : Stream -> Stream .

op zip : Stream Stream -> Stream .

vat N : Nat . vats S S' : Stream .

eq head(N & S) = N . *** 1

eq tail(N _ S) = S . *** 2

eq head(odd(S)) = head(S) *** 3

eq tail(odd(S)) = even(tail(S)) . *** 4

eq head(even(S)) = head(tail(S)) *** 5

eq

eq

eq
end

tail(even(S)) = even(tail(tail(S))) . .=* 6

head(zip(S,S')) = head(S) . *=* 7

tail(zip(S,S')) = zip(S',tail(S)) . *** 8

As usual, head, tail and ..__ give the first element, the elements after the first,

and place an element at the front of a stream, respectively, while odd and even

give the streams of elements in the odd and even positions, respectively, and zip

interleaves two streams.

A behavioral theory is decl_e(t in BOBJ via the keywords bth . . . end, with

the signature and the equations in between. All sorts declared in a behavioral

theory are considered hidden; the visible sorts {here Nat) ,are imported from



'.,,,hi,, ,,>il,h, (,t,,lai _p,,cili,:,ti, m lh,,r, , NAT), .\1:-,,_ _q.'r.Lti.u,, :it,' I,,,ha',i,,I':,t I,v

,b,faulr: ;lit ,:,F,l,raricm m)t mt,,wb',l t,, l., I.'havil_t'al lwhi,h is rath,,r t'ar,, i;i

pt';wtic,,1 i_, ,_h+,n tit,, atttihur,, ncong. The tll(,,h,ls iif a, I.,+.ha,, h,ral rhel,rv are

the hi,l,h,rl al_l,l,,r;t:., thnt I.,,,h;lvi,,r:dlv -::lii:-.f;' all its i,,luatil,n:-, [u our ca..e, the
stan,lar, l ut<,,l,'l is rhar lff inrildr+, li>rs l+f narlu';l[ nunnl..r_., with head ;tn,l tail

a._ e×p+'<'tl.,l tth,' t;ti[ ,_[;in ill+}llir,' list" iS iZt_llit't"+, :tlld fl,r _'x;tIltpb'. odd([ 2 3 4

5 6 7 8 9 ... ) is t 3 5 7 9 .... even(t 2 3 4 5 6 7 8 9 ... ) i:-. 2 4 6

8 .... an,[ zip(l. 3 5 7 9 ..., 2 4. 6 8 ...) is i 2 3 4. 5 6 7 8 9 ....

[-[<JWl',,'l'r, there ttia'v al>o be' tlqai--tnlL<lar_l ni,>,h'Is: for +'xanq,l,'. th,+ tu(J,M with

exa<il'c (Jill + elenl(,nr in each <arri++r is vatid for &nv [q}o+'-+< +. <[;tPii. hi+lilt'It tl'L('or'v.

[I! ?+his exalllpl+-,, F <'{}ll[+tJIis ;t]] [h,p ()per,[ttiOllS, bec+[tllSe &ll of thelll ar+' [,',eh+t'v-

h>ra]by default. Therefore. head(+), tail(+), head(tail(zip(odd(+) , z) )),

are all ,C-contexts. [f A is the standard infinitelistmodeh then two listsare

behaviorally equivalent iffthey have the same elements in the same order. How-

ever+ there are mo(lels where a stream is an infinite tree, or some other infinite

structure, an<[ elements can be behaviorally equiwdent but not equal.

One can show that head an,[ tail suf[h'e +k'_behavioral operations, since

together they can observe all behaviors of states, anll thus define the behavioral

equivah,tl('e+ There ar++ at least two approaches to behavioral operations: one

says th;,t F should contain as few (>perarit>ns am possit>le, an,{ the other says it

,',mt;lin as tll;ltlv &s possible. \\+, ;uho,'ate th(, s+,cou,[ approach. <in('e it is ll;itur:d

in it to <+q+,('t vari, ms subsets, calle,[ ('ob;tses. that support simple coin,luction

proot_,< .Moreover. arLv operation th;tt is ,'onsistetlt with tile intended behavior

of a specification, i.+'. that pr+'serves tit+ + behavioral equivalence, can be added

to E without ('hanging the behavi()ral e<luivalence relation [26!. ;tnd there are

('onvenient cong, l'uenct _' criteria to (letermizle whether this is the case. as described

in Sitbsectiotl 4.3.

3 Hidden Equational Deduction and Cobasis Coinduction

This section presents our latest version of behavioral deduction, excluding circu-

lar coinduction, which is described in the next section, ,'rod "'explicit coinduction "+

[17], where the user must provide an explicit relation, since this is difficult to au-

tomate. However, we do discuss cob_is coinduction (also called A-coinduction),

because the relation that it uses can be generate<| automatically front a coba+mis .I.

We expect future work to yiehl filrther improvements in mechanizing coinduc-

lion.

3.1 Hidden Equational Deduction

Orllinary equationM deduction is unsound for behavioral satisfaction, because

the congruence deduction rule is unsound for operations that are not behaviorMly

congruent (e.g., for NDSTACK in [18]). The rules below modify the usual equational

Cobases are introduced ia the next section.



,I,,,llwticnl r,, a,.,,llnf t_n' _hi',. _._.,.ti.'.: a _p.cilic.tfi_m b' = (_'. ['./'.'1 ;m,I h,r

t.,,b,fin,,,l,)u u,rm._ hvtll 151 I.,hJv,'.

I l _ Reflexivity
t =_t:',l t

= t:',i

(21 Symmetry
t -_ L,I t _

t' - E,I t

(3i Transitivity t =_E, I t'. t' =-Eq t"

t =Eq t"

(4) Substitution
(Y}) t = t' E E. 0: Y --4-.Tx(.\'), 0(t,) =Eq O(G)

0{t) =-Eq O(t')

f

(5) Congruence : / _t

/b!

t =-Eq t'. sort[t.t') E I," ]

a(W.t) =Eq a(W.t'), for each cr E Der(_)

t =-Eq t'. ._ort(t. Fil _ H

drII-.t) _--E, t _([[-. t'). fi,r each ,:ongruent ,) £

If cz is any derived operation over _ having ax[ argument of sort s. an([ if t is

a _-torm of sort .s. then for simplicity we let ,7(Ii. t.) denote the term obtained

from o" replacing its argument of sort s by t and using some ,tistinct variables

II for the other arguments.

Unlike equational logics, the deduction system above is not complete. [n fact.

behavioral satisfaction is a H._)-hard problem [.3]. so one cannot find an automatic

procedure to prove all true statements or disprove all false statements. For the

example in Subsection 2.1. one can relatively easily prove

head(zip(N /, S, S')) -Eq head(N & zip(S', S)),

tail(zip(N R S, S')) -Eq tail(N _ zip(S', S)).

head(zip(odd(S), even(S'))) =E _ head(S), and

head(tail((zip(odd(S), even(S')_)) -Eq head(tail(S)),

head(tailt°°((zip(odd(S), even(S')))) =Eq head(tailL°°(S)),

and/liil('h more, but it is not possible to prove any of the following:

even(N & S) =-Eq odd(S).

zip(N _ S, S') =E . N & zip(S', S),

zip(odd(S), even(S'I) =Eq S,

odd(zip(S, S')) =Eq S.

We willsee that some of these can be proved by coba.siscoinduction, while others
need circular coinduction.



:L2 C()Ull)h+t,+ S(+t.,+ <)|" OI)s(,rvers

.\ .m+%+/,'t,' .,,st ,,+I,../_,+'t'r,r+. I?,] is a. _.(,r .>f ('<.moxt_ that ,-;t_. '_.,n(.r:m." all ..',:por-

il[l+'llt'-, ,)II ;t '+,3"',t+'lll. The (<)lh)win_ <l+'tiniti()n is :ul;q)t(,,l from [3] t()(Hlr Itot;lth)Ii

;m(I t..rtnit.>h);4.v:

Defitliti<)ll 7". (;+t't':l t£ ]lidd+'t? +_+9+lr£+ttt'+' ['. u' coniplete set of observers f,,

F is, ,,t ,,f F-,,,nt,'.rt.+..,,ill X. +'u,'h t/,,t f,r +',z,/z F-,,.rl,.vz+,,nt t. "i _'/.[l] t]l,'l'e

_.+ +¢m+," f'-,'+,:+t,'.rt ,) _ _3, _+'hW]£ iS el .,;tdJ+J:Jllt,',l't ' of "..

This >;tv+_ th+lt (,vorv t,xp,,ritll(,llr -, [l;k,_ th(, f<)r'ttI "+,'[¢)]for s<Jn|,' oth+,r 'sulall¢,r'"

+'x[)+u'im('nt ",' awl sonic +) E .-._. This notion already has a dual flavor to that of

ba.++i++for strttetural in<hicrion, where for each element t of an abstract data type.

there is :ont(, other element t' and an operation d in the basis such that t = d[t').

Tile following provides two easy examples:

Proposition 2. For arzy F. both F lind ,_F[e] +lre complete .sets o/ob._er_+,ers.

C(msi<ter the hi,hlen subsignature [" of the signature of streams in the exam-

pie ill Subsection 2.1 containing only the operations head and tail. Obviously.

,_'v[,] consists of all the terms of the form head(tail(...(tail{.)))), for an a,'bi-

trarv n)tml)(,r ()f ()('curr,qlCeS of tail. Th+'n it is easy to see that

-_t -- {he_d(,_,taiI(+)} = /".

12 = {head{a).head(tail(,)).tail(tailI,))}.

-_I -- {head!,!.head(tail!,j).head(tail(tail(,))).tail(tail(tail(,}})}.

--&-[.].

are all ('omph>te s+.ts of observers for F.

"It) >implify writing we ambiguously let /" also denote the subset of F-

com_.xts obtained directly, without COml)c, sition, from the operations in F. such

&'_ -_t above.

As with induction, where some bases can be better than others for particular

prooN, it is possible that some different complete sets of observers are b_tter for

different applications. For example, if one defines a stream blink by

eq head(blink) = 0 .

eq head(tail(blink)) = I .

eq tail(tail(blink)) = blink .

then it is ahnost certain that the complete set of observers -/2 above is better

than tile others. (Tile streanl blink is 0 i 0 1..... )

V+'e tit) not further develop this topic here, here but refer to [3, 26]. However,

we wouht mention a disadvmltage of complete sets of observers, that they do not

take into account the whole specification but only its signature. In particular,

in the ex,'mlple in Subsection 2.1 where F = _ contMns all tile operations, it is

pretty cuulbersome to find ,an appropriate complete set of observers.

s That is. a snbterm; notice that +5necessarily contains the variable • from %



3.3 Strong Cobas_,s

"['It+' ,'+,mI>b,t,+ fl_rnml <h'fittiti_m ,_f ;t stt',m_ <'_d>asi> is <pUt, t,','hni,al ;m<l not

I'+'l++valtr t_J_mr xv+,rk, s_J we+>kip it. [ntuitj,.q,lv. a gtr<;.l|_ <'ol);t:.,is is a ,',mq)h,te set

<it"<A,>,,,rv+,r:. that taD.s into ;t<'+_>unt th,. eqmLtw,s _)f a sp,wifi<';ttion m showinK

that '['_rem'h /_-_,xl.,rilul,nt-,tlt_'l'4'issolne ccmt_,xt,)_ ..Awhii]l Is;t,_ill_<'OtLreXt

id'-:".

[n rh,, <,×aml:,l,, ,ff srl'_,a.ttL._ v..ith. F = _. ,m,, can r,,,lic.,tlsl',,' lmr..-+, t,v in, hL<tic, n

IJlI rill, gfl'li<'tlll'+' t_[" <'i:nl+,xr_, Pilaf lilly +,xp_,riHleilt is _'qllnl rl} +ill pXp+TilneIlt

,'onraining, <rely head awl tail operations, s<.+all the colnpI+.te >_'t>(Jr ol,+,:'rv,_'rs

-Ai. _2 ..... ,.3.-,,_ for F = {head, t:ail} in the pr+,vious sltbsecrion really are

strong cob;uses for the original specification of streams. A loss intuitiva strong

cob;kqis for streams is {head, odd, even}, _m(l one can also te<tiouslv show that

any experiment is equivalent to an experiment cont_ning only head. odd and

even. Intuitively. this is because the three operations can "'observe" any element

in a stream. For example, head(even(odd(odd(S)))) observes the fifth element

of S. whiI+, the exi>+_rinlent head(even(even(odd(even(odd(S) ) ) ) ) ) observes

the 27th element:

S : (1[ (I 2 t'l 3 ¢11 _l 5 (16 II 7 rl_ ¢1!! ..

odd(S) = IIl I12, ¢I 5 ¢17 rl!) till IIi; l +115 +''

even(odd(S)) = ¢_: _: _I ;;t'_ "::+ o:3 _'_,= +L:I ''"

odd(even(odd(S))) = _*:_atl ++t!)+:.':" <":c, <_l:l _I.;t'_._!+""

even(odd(even(odd(S)))) = ¢ttl _r,: ,_l:l ,_-_!_ "'"

even(even(odd(even(odd(S))))) =_v_,r ¢_;_ --.

head (even (even (odd (even (odd (S)) ) ) ) ) = a..,:

Th(,re are situations where the latter cobasis is better than the standard one:

see/26] for a (letaile<t presentation of strong <:ob;k<es. together with more elegant

proofs that the above are all strong (:obak_es. an([ a pr(>of that any COnlplete set

of observers is a strong cobasis.

3.4 General Cobases

Our general notion of cobasis (see also [18.19, 25]) is as follows:

Definition 8. If lY = (5', F', E') is a conservative extensiot_ of _ = (5, F, E)

and if A C _', then :_1 is a cobasis for /_ iff for all hidden sorted terms

t,t' 6 T__,^(X), if t;'_ (VII:X) d(W,t) = d([Kt') for all appropriate d 6 A

then _ _ (VX) t = t'.

The h)llowing is a key first step towar<l atttomation of coinduction; it was first

proved in [271:

Theorem 2. Every strong cobasis is a eobasis.

To e,_e presentation, from now on suppose that ,..1 is a cobasis of/_ with

[4' = (Der(5),F, E) and ",.l C_ Der{F), where Der(5) denotes the set of all

5-derived operations.



3.5 z..%-('oi,l_luction

()nc-;t ,'l>l,;I.'.is is :w:dtal,l,'._,,iudl[uti_m ,';_zl I,,,;q@i,',l ;,immmric:llly. [.,.r -E,/.4

I.. th,' r, qari_m _,u.rar_.(I 'i hv rul,'s (l) (5i ill S,,t,s,,cri, m 3.1. phns

_iill'.t) --/L/.4 ,f(ll'.t') fi_r ;ill ;tl)l,r(,l_ri;tt. ,J _ _3
(61 _3-Coinduction:

t -E,t..s t'

"I'h,' fi)lI(,win4 is imm-,li;it, fr.m tit. ,h*i'iIliric>n _,f ,_)h;tsi>:

Proposition 3. =_E, 1 _Z =E,I.4 'Z =- •

Thus. to prm'e that t_'rms t. t' are behaviorally .quivah,nt. it suffices re show that

t =_E,I..a t'. In particular, in our stream example, where .3 = {head(.). tail(.)}

is a coba..;e, one can immediately prove bv ._l-coinduction and equational reason-

ing that

zip(N&S,S') -E,t_ x N_zip(S',S),

by showing that head applied either tern, is N. an(1 that t:ail applied to either

term is zip (S', S). One can also prove even(N&S) =-Eq.4 odd(S), aml man7

other similar bNmviot'al prop,,rtb,s.

4 Circular Coinduction

This sect itm gives an inference, rule fl)r I)ehavioral reasoning, called circular coin-

duction, since it handles some examples with circularities (i.e.. infinite recur-

sions) ttmt could not be handled by previtms rules lwre Ior in [27, 1S. 19.2511:

we may also call it circular -3-coinduction or _3 "-coinduction.

Aft_,r oxploring how to prove the congrm_n('e of ot)_,rations in [27] Is(,e alst>

f26] and Subsecti(m 4.3 below), W(e became' convinced that this do*'s not dif-

fl'r essentially from proving other behavioral properties, except perhaps lhat it

is usually e_ier. Also certain "'coinductive patterns" that appeared in specify-

ing opt,rations inspired a congruence criterion that could automatically decide

whether an operation is congruent ['2.7,26]; moreover, this criterion followed from

the .3-coinduction rule and was strong enough for all proofs we knew at that

time. But the fact that the congruence of zip in Subsection 2.1 (in the con-

text in which only head and tail are declired behavioral) didn't follow by that

criterion, suggested that more powerful deduction rules were needed.

Bidoit and Hennicker [3] gave a general congruence criterion from which

the congruence of zip followed ez_ily, lnfluenc_'d by the relationship between

A-coinduction and the congruence criterion in [27]. we sought a general infer-

ence rule from which the criterion in [3] wouhl fi)llow as naturally _ our cri-

terion in [27] followed from _3-coinduction. and which could prove behavioral

properties not provable by A-coinduction. The result of this search was circular

_3-coinduction, as presented in this section and implemented in BOBJ [14].

6 Strictly speaking, =-Eq should be replaced by =--Eq.a in rules (1.)-(5).



.1.1 Li.fitathms of .,..1-C.h,,ll,ctiou

_,_,,, lh".r ,,,iv,, :.,c,n,, ,,×;trot)l,,:..+ v,h,,r+, rh,, si× ruh,:< _+,mu-:tri._ rh,, r,,la.rhm _Eq,j

;it'+' If(Jr +'Hi)ttRh re l)t+(wp cl,rl;litl .,hnl,l+, pr(qJ.rtip:++:, which ]um,"c,,r can 1,,' .;Lqly

pt'<v+,,,t by <'h'cld;u" _-<'(fin+hwti<+,tl.

SUlq,,)+e ,me '+v;tnrs tl) F,r,')v+, that zip(odd(S), even(S)) - S hohls i. the

b,'havi<,r;d s[.u'<'ifi,-';_.th)n c>f Subs+,,'th,n 2. |. Let us cl.,+_,, th<' :..r;tn,lar,[ (strong)

c<,l;,a+_ts _3 = {i'teadI*).tailI*]}. F.r .A-coin<ht<'ti,m. ()Its, has tl, prey+, that

headfzip{odd(S),even(S'_)! =Eq.._ head(S), which fl,H<,w_hv ,.<i,tati;m;tl<h-

_[Tt<'ti<m.amlthat tail(zip(oddISi.even(S)}} -Eq.I tail(Sl, whi<'ht',+,lucesto

zip(even{S).even(tail{S)lj -=E,I. a tail{S). D}" /-cuinduction. one sinfilarly

generates two other subgoals, namely head(zip(even[S), even(tail(S)))) =-Eq,..t

head(tail(S)), which is ea.sy, and tail(zip(even(S),even(_ail(S)))) =-Eq.a

tail(tail(S)).whichreducestozip(even{tail(S)).even(tail(tail(S)))) -Eq.l

tail!tail(S)). Since the last subgoal is nothing but tile previolls Ihi<hlen) one

where S is replaced by tail (S). this procedure will loop fi)rever, and thus does

not work. But circular comduction will detect this circularHy and terminate,

declaring the initial goal proved. Befi)ro we ,liscov++red and implenwnted circular

coin, luction. BOB.I either fl'oze or reported a 'segmentation fattlt'" when a_ked to

automatically prove such ln',@,','ti,'s. We ew.'our;tge the interested roa b.r try to

pti)ve odd( zip(S. S')i = Eq._l S with basis coin, t,wtion, aml re ,tiscover another

se+'ntingly h()pelpss +'it'cltlaritv there.

4.2 Circular xl-Coinduction

Let L'; = (K, F. E) be a fixe, I behavioral sp+,cificati(m fl)r this subsection. To

ease the presentation, s+tpposo that _} is at (:onq)lete set of observers, Technically

speaking. _.1 can be a strict cobasis but the proofs are slightly more cotni)licato<l:

although we haven't yet proved the correctness of circular coinduction for general

cobases, this doestFt seem to have any practical relevance, since all the concrete

cobm_es we know are either complete sets of observers or are strong cobases. We

consider all equations to be quantified by exactly the variables that occur in

their two terms, and omit them whenever possible; we also write t - t' instead

ofB _ (vX) t = t'.

Definition 9. SubstittLtions O,O': X -+ Tr'(Y) are behaviorally equivalent,

written 8 = 0', iff O(x) =_ 8'(x) for evemj x 6 X. Terms t arid t' are strongly

behaviorally equivalent, written t _- t', iff for any L;-algehra .4 and ar, y

rt,r., : .\" --+ A with rt(x) -_ r._,(¢) for each .r 6 .\" rt/t) _=v r.,(t').

Notice that _ is symmetric anti transitive but may not be reflexive, since, for

example, terms of the form er(xt ..... x.) are not strongly equivMent to any term

if (r is not congruent (see also 5 of Proposition 4).

Proposition 4. The following hohl:



I l = t' _ttuJhc_ l = t'.

.L.t - ,I_/f t ± .. whcm'vrr . _s a l%h'rm.-:

._. t - t t arid 0 _ t_' Lrtlpl_J O(t) "--" et(t'):

';. cr _. i'oo.qr_t,,t_/ t,]._o(.r l ..... .r,) =_ cr(.r I ..... ',,I.

[';..f 1. "l'hi_ is _rr:d_htforw;u-_[ since one' can rak. rl = :-2 lit D*,fiztiti(m 9.

2 [f t _ . thrn t _ . I,v i. Now s q_[))s,' th;tt t _ It .tZtl[ h,r r i. ,_",, }.'lik. in

D,.fimri,,u 9. Sim'_' _ c<mtains only congru_,ut operari(ms, then one can _'_c',iiy

stz(Jw by stru('rHra] induction that rt(n ) _I_ r2(tt)" On tile other hand, since

r_It) _r hi,)and r.,It) -_ r,(u), it follows that t _- _L.

3. Suppose that t _ t'. that _ is a F-experiment and that ft. r2 : var(t.t') U

car -,I --, A are maps as in Definition 9. It is imrne(tiate that ri(t) _=r r.,_(t').

Since " contains only congruent operations, it can be ea,4ilv _een that rt ('I[t})=

.4.,t :-l(ti,(rl) = .4,(r.2(t'))(rl) = A_(r.,_(t'))(r2) = r.2(2,[t'J) Conversely. suppose

that -,[t I "_--",It'] for all appropriate F-experiments -_, and let ri. r2: tar(t, t') -4

.4 I_-' tw(-_ maps as in Definition 9. It suffices to show that for any F-experiment -:.

.4-I 7!Ir,t = A. ('=2[t'P t _/.S flln('tions in {Iv,,r('.) _ .4) --, .4J. Notico that givin_

a fum'ri(>n in [r,r(" i --..4] inlplies oxt('n(iil_g rl.72 to flm('tions r_w(t.t', U

r,r(-., _ A. in which case..4,(r,(t)l. , = rt(?,[t]) = .4.-f-..2(t')) = r2(5[t']).

4. this fi)lh)ws by noticing that for an}, ri r., : } --+ A with rt(b') -_ r,(yl and

any 0.¢4': .k _ Tr(}) with O = 0'. it is the case that the maps 0: r_.0': r.,: .\ -4

.4 also satisfy the property that (R: rl )(r) -{ (0': r.,'l(r) for each .r _ X.

.5. a is congr)wnt iff .4,, lot ..... a,,) = .4_, {a'_ ..... ,_,) ) for any a). a'_ ..... a,. a_,, with
¢

a_ -- _t't ..... el,, = an iff rl(o'(.r! ..... .,"n)) -= r._,lo(zl ..... .rn) ) for r_(.r,) = a, an(l

r2(.r,) = a; f()r all I < t < n iff _(.rt ...... r,) _Z-q(xl ..... a',,).

For the rest of the section, we assume some well-founded partial order < on

F-contexts which is preserved by the operations in F. For example, one such

order is the depth of contexts.

Definition 10. Terms t and t' are A'-'-eoinductively equivalent iff for each

appropriate d E .,1. either d(W,t) = 5(W,t') = u for some F-term u, ord(W,t) =.

O(c[t]) and d(W,t') =_ 0'(c[t']) for some 0 =-- O' and c < _5.

Theorem 3. If t and t' are .3 :-coinductirely eq,m;alent then t _- t'.

Proof. We first show by well-founded induction that for every appropriate ex-

periment -_. -_[t] _ ?It']. Let 7 be ,any experiment and assume that 3/[t] _ "r'[t']

for all experiments "t' < "/, Since _ is a complete set of observers, there is some

r We write "F-terms" for simplicity, but the result holds for all terms built with

congruent operations.



,'Xl,,'rim,'nt -." _uch thnt _, - _.""IAi fi,r _,_m_' n _ _. If th,,r+, i:. _nn,' /'-r_,rtn u

',,,'h rt,;,t S(It.t+ -,iiizr) _- ,, _h,,n "'[d -- -,[r] - "."[,,] ;m,t "."I,,J i_, ;, .V-r,.,.,,,.

..,, I,v 2 ,,t l-'r,,p,,siti<,n 1. ",It 1 - 7.It']. ()t, tit,. <,ther han,I, if 5( [I.t_ - 0(,[1]) aml

5( [_. t') _= 0'(,[t']) for s()nu, 0 _ O' ;m,[ r. < ,i. tl,.n situ'_, rite v;trinl,l_.:, apl,eal'ing

ill +'()IIll'X[:., at'(' ;D.;sItll|o([ PI) ]_(, ;I[(A'DVN <[itf+.r_,ni" fr()nt i']tp oth_'r v;tri;tl,l+'s, ()ll_! gets

,h;tr :'!'1: _ ."I,I'l])+,lt, t :_[_']_-_'c-."[dr]l',. ;,,,,t s,, hv rh,. i,,,b,,._i,,, h,i,,,rh,,_is
for -,' = 2,"["1 < "/'[,:il = ", a,t<l-t ,,t" Pt',,l>,>_.iri<,n-1. ".It I __ ",[t']. [h,. r,,:.,r folhw,s

"l'h4'l'_+f(wp we c;ttl ad<[ a new inf,+r+,m._ , 1"1110. _itll'l _ ill IIlOSt c;u-.pS /4 = /4' Wp lt'r

=_E,l,.a be the relation gen(*r;!.ted* I_X"rite rules (1)-(6) in Sui)secrions 3. t an,l

;1.5 an<l tit++ following:

(T)__ -Coinduction'

where +t is some F-ternl) or

(,_+t_.t)-Eq.__ o(,.[t])a,,,t ,i(n.r') --_q.__ o(dt'])
fi)r some c < 5) fi)r all appropriate 5 E A

t =-Eq._a F

Ill ()r(ler Io pt-ove that t _= ¢z, ()tie c:311 l)t(Jvp now th:tt t _-Eq.a t'. For

('xantple. to prove that zip(odd(S), even(S)) - S. the prup,'rty that sent

_]-coin,hl('ri()n into an infinite h)op in Subsection 4.1. one can fir_.t prove that

zip (even (S) , even(_ail (S)) ) =-Eq.A tail (S) by {head, tail} "-coin(hlction

[if d is head then we are in tile il'st case of (7) and if 5 is tail then we are ill

the second ('ase of (7) with c = • and 0(S) = tail(S)), and then tt) prove by

{head, tai 1 }-eoinduction t he original behavioural equality as in Suh-_e('t ion 4. I.

"O,'e suggest the reader prove that odd(zip(S,S')) = S also by {head,tail} -

coinduction att(l then prove both statements by {head,odd,even}-ct,in,ht<-tion.

BOB.I implements circular coinductive rewriting [14.13J. an algorithm that

combines the cointhtction inference rules presented in this paper with behavioral

rewriting, an adaptation of term rewriting to our behavioral equational deduc-

tion system; this can automatically prove all the reasonable statements that we

know, including all those mentioned in this paper, and all those that we tried

fi'om examples previously done by CoClam [6] using complex heuristics, but of

course new inference rules may be needed for more exotic examples.

4.3 Congruence Criteria

The simplest way to find a cobasis for a behavioral specifi<:ation is to guess

one ast(l then to show that all the other operations are behaviorally congruent

Strictly speaking, -Eq in rules (I)-(5) and =-Eq,a is rule (6) should be replaced

by -o
= Eq..a



_l_+'citicatil>n I_ut ,rely the' _q_,_s+'d tJl,'ra+i_m>, ql_'rlar+',[ as Imhavi_r:d (_,l,t, if_g+

2(;j fiw re, w,' <h'tail). Sim_' ,m+' _d"_mr m:l.j,>r g, mls is r<>:mr,rotor,, _h_, pr()c+,ss _>f

],q'havi<Jr;d _h,dltcrb>zt in B_)B.f. the, l)r(d_b,ut _t" mLt_,m;,th" d_'r_'cti_m of c<Amst's

plays a cx'_wial red-. B()B.J mq>b.mcnts a h,,_tristic thin w_t-ks w_+l] m l>ractic;d

sirln;)+ti_n'., awl is Ims.,l ,st+ rh,, f+,lh,wm_, +'rit,'ria. whbh f<dh+w f'r(mt Th_'_)retn

3. Th,, tir>r c<)tt_rtt+,nc+, <'t'it+,ri(>rl. which ;',. +,.ill call flu. BH criteriOll, is the,

+'SS, ql('+' ,,_f that ill [3i:

Corollary 1. Gz,,:, ,_ ,'omp/,te ._,'t ._J of obs,'r_,,,_._ ,£_/,t s,)t_te ,7 _ _ su,'h

th,,t for e,t,'h _) _ _J+ ,,tth,_r _[_(.rt ...... r,) l - ,_ for _ome F-term tt. or" else

@,l.,', ...... r,,)] = ,.[+_lt..... t,,!] re, s,,,,_+ F-te,++,,._ t..... t,_ a,,,_ c< 6. the,_ _, is
con9ruent.

Proof. Theorem 3 with t = t' = a(xt ...... rn) and 0 = 0' with 0(.r,) = t, for

all I < i < n. gives ++xt ...... r,,) _ aC.rt ...... r,,'+. Then 5 of Proposition 4 gives

c()n_i'lt("l+1('+ _ of O'.

The following simpler but c_mmton congruence <'riterion. which we here call

the RG criterion, was pr_s,+rm.d in [271 tog,_ther with the suggestion that it

could l., easily iml)l(-+n_(+nte, l in a syst+,m Ilk+, C'af+-,()Bl:

Corollary 2. Gu'c_ ,z,._ opemt.m cr _ _ sm'h th,_t for e.,.h ,_ _ 1-. tf the eq:mtton

Proof This is the sp,'cial case of the BH ('rit(,ri<)n where _3 = F and there is no

circularity (i.e.. ro('m'r++n(-o) in the definition of or.
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